MiniBooNE and the SNS

Overview of MiniBooNE & Current Status Neutrino Physics in a Post-MiniBooNE Era

H. Ray

Los Alamos National Laboratory

Outline

- LSND : The motivation for MiniBooNE
- → MiniBooNE Summary
- ➡The SNS
 - ⇒Properties of the neutrino beam
 - ⇒Proposed detectors
 - ⇒Interactions of neutrinos in the detectors
 - ⇒How to use these interactions to test neutrino physics models

Neutrino Oscillations

Δm² is the mass squared difference between the two neutrino states

Distance from point of creation of neutrino beam to detection point

$$P_{osc} = \sin^2 2\theta \sin^2 \frac{1.27 \Delta m^2 L}{E}$$
The sine angle is the mixing angle.

E is the energy of the neutrino beam

Observing v Interactions

- Don't look directly for neutrinos
- Look for products of neutrino interactions
- Passage of charged particles through matter leaves a distinct mark
 - ⇒Cerenkov effect / light
 - ⇒Scintillation light

Cerenkov and Scintillation Light

- Charged particles with a velocity greater than the speed of light * in the medium* produce an E-M shock wave
 - \Rightarrow V > 1/n
 - ⇒Similar to a sonic boom
- Prompt light signatur
- Charged particles deposit energy in the medium
- ➡Isotropic, delayed

The (In)famous LSND

- 800 MeV proton beam +
 H₂o target, Copper beam stop
- 167 ton tank, liquid scintillator, 25% PMT coverage
- **→** E_v ~20-50 MeV
- ► L ~25-35 meters

$$\overline{v}_e + p \rightarrow e^+ + n$$

$$\Rightarrow n + p \rightarrow d + \gamma \text{ (2.2 MeV)}$$

The LSND Result

- Different from other oscillation signals
- \rightarrow Higher Δm^2
- Smaller mixing angle
- Much smaller probability (very small signal) ~0.3%

The LSND Problem

Confirming LSND

$$\Delta m^2_{ab} = m_a^2 - m_b^2$$

$$P_{osc} = \sin^2 2\theta \sin^2 \left(\frac{1.27 \Delta m^2 L}{E} \right)$$

$$Need precision expt!$$

$$Want the same L/E$$

$$Want higher statistics$$

$$LSND_{v_{\mu} \to v_{e}}$$

$$V_{\mu} \to v_{e}$$

$$V_{\mu} \to v_{x}$$

$$V_{e} \to v_{x}$$

- Want different sources of systematic errors
- Want different signal signature and backgrounds ,

MiniBooNE

10

Start with an 8 GeV beam of protons from the booster

- The proton beam enters the magnetic horn where it interacts with a Beryllium target
- Focusing horn allows us to run in neutrino, antineutrino mode
 - \Rightarrow Collected ~6x10²⁰ POT, ~600,000 v events
 - ⇒Running in anti-v mode now, collected ~1x10²⁰ POT

- \rightarrow p + Be = stream of mesons (π , K)
- Mesons decay into the neutrino beam seen by the detector

$$\Rightarrow K^{+}/\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\cdot \mu^{+} \rightarrow e^{+} + \overline{\nu_{\mu}} + \nu_{e}$$

- An absorber is in place to stop muons and un-decayed mesons
- Neutrino beam travels through 450 m of dirt absorber before arriving at the MiniBooNE detector

MiniBooNE Detector

Detector

- → 12.2 meter diameter sphere
- ▶ Pure mineral oil
- → 2 regions
- ⇒Inner light-tight region, 1280 PMTs (10% coverage)

 H. Ray→Optically isolated outer veto-region, 240 PMTs 15

Event Signature

MiniBooNE Current Status

- MiniBooNE is performing a blind analysis (closed box)
 - ⇒Some of the info in all of the data
 - ⇒All of the info in some of the data
 - ⇒All of the infoir all of the data

We haven't yet opened the box

Confirm LSND

Inconclusive

Reject LSND

Confirm LSND

Inconclusive

Reject LSND

Need to determine what causes oscillations

Confirm LSND

Inconclusive

Reject LSND

Need to collect more data / perform a new experiment

Confirm LSND

Inconclusive

Reject LSND

Need to determine what causes oscillations

Need to collect more data / perform a new experiment

Confirm LSND

Inconclusive

Reject LSND

Confirm LSND

Inconclusive

Reject LSND

All Roads Lead to the SNS

Confirm LSND

Inconclusive

Reject LSND

Need to determine what causes oscillations

Need to collect more data / perform a new experiment

What is the SNS?

Front-End Systems

(Lawrence Berkeley)

Spallation Neutron Source

Accelerator based neutron source in Oak Ridge, TN

Accumulator Ring

Target (Oak Ridge)

(Brookhaven)

25

- Pulsed bunches of 1 GeV protons sent into liquid mercury target 60 times/second
- Pulses 695 ns wide (LAMPF = 600 μs wide, FNAL = 2000 ns wide)
- Neutrons freed by the spallation process are collected and guided through beam lines to various experiments
- Neutrinos come for free

 π^- absorbed by target

(Liquid Mercury (Hg+) target)

$$\Rightarrow \pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\Rightarrow \tau = 26 \text{ ns}$$

$$\Rightarrow \mu^{+} \rightarrow e^{+} + \overline{\nu_{\mu}} + \nu_{e}$$

$$\Rightarrow \tau = 2.2 \text{ }\mu\text{s}$$

Pulse timing, beam width, lifetime of particles = excellent separation of neutrino types

$$\Rightarrow \pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\Rightarrow \tau = 26 \text{ ns}$$

$$\mu^{+} \rightarrow e^{+} + \overline{\nu_{\mu}} + \nu_{e}$$

$$\Rightarrow \tau = 2.2 \,\mu s$$

ightharpoonup Mono-energetic u_{μ}

$$\Rightarrow$$
 E = 29.8 MeV

 $\overline{\mathbf{v}}_{\mu}$, \mathbf{v}_{e} = known distributions

 \Rightarrow end-point E = 52.8 MeV

SNS Near Detectors

- 2 near detectors
 - ⇒ Mini-MiniBooNE
 - ⇒ Segemented Detector
- 2004 : LOI submitted to Oak Ridge
- August 2005 : proposal submitted to DOE
- Status : awaiting funding

SNS Far Detector

- MiniBooNE/LSND-type detector
- → Higher PMT coverage (25% vs 10%)
- Mineral oil + scintillator (vs pure oil)
- ► Faster electronics (200 MHz vs 25 MHz)
- ~6om upstream of the beam dump/target
 - ⇒Removes DIF bgd

Neutrino Interactions

Elastic Scattering
Quasi-Elastic Scattering
Single Pion Production
Deep Inelastic Scattering

Neutrino Interactions

SNS Allowed Interactions

Elastic Scattering
Quasi-Elastic Scattering
Single Pion Production
Deep Inelastic Scattering

GeV

Elastic Scattering

- Neutrinos can elastic scatter from any particle (electrons, protons)
- Neutrino imparts recoil energy to target = how we observe these interactions

Quasi-elastic Scattering

- Neutrino in, charged lepton out
- Target changes type
- Need to conserve electric charge at every vertex
- Need minimum neutrino E
 - ⇒Need enough CM energy to make the two outgoing particles

Neutrino Interactions @ SNS

- All neutrinos produced from a Decay At Rest source
- All neutrino types may engage in NC interactions
- Muon mass = 105 MeV, Electron mass = 0.511 MeV
 - ⇒Muon neutrinos do not have a high enough energy at the SNS to engage in CC interactions!

How do we use these interactions to search for new physics?

ν_{μ} and anti- ν_{μ} Osc. Searches

- 2 oscillation searches at SNS can be performed with CC interactions to look for flavor change
- Appearance: $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ (ala LSND) $\Rightarrow \overline{v}_{e} + p \rightarrow e^{+} + n$ $\Rightarrow n + p \rightarrow d + 2.2$ MeV photon
- Appearance: $v_{\mu} \rightarrow v_{e}$ $\Rightarrow v_{e} + {}^{12}C \rightarrow e^{-} + {}^{12}N_{gs} \leftarrow$ $\Rightarrow {}^{12}N_{gs} \rightarrow {}^{12}C + e^{+} (\sim 8 \text{ MeV}) + v_{e}$ $\Rightarrow \text{MiniBooNE uses } v_{e} + n \rightarrow e^{-} + P$

lower E $\nu_{\rm e}$ vs higher E $\nu_{\rm e}$

Neutrino Interactions @ SNS

Sterile Neutrinos

- Sterile neutrinos = RH neutrinos, don't interact with other matter (LH = Weak)
- Use super-allowed NC interactions to search for oscillations between flavor states and sterile neutrinos
- Disappearance: ν_{μ} → ν_{e} $\Rightarrow \nu_{\mu}$ + C → ν_{μ} + C * $\Rightarrow C$ * → C + 15.11 MeV photon
- ightharpoonup One detector : look for deficit in v_{μ} events
- ightharpoonup Two detectors : compare overall v_{x} event rates

Sterile Neutrinos

Near Detector only

Near + Far Detector

Mass Varying Neutrinos

- All positive oscillation signals occur in matter (K2K, KamLAND, LSND); no direct information on oscillation parameters in air/vacuum
- Impose relationship between nus + dark E through scalar field
- Scalar field couples to matter field = different osc parameters in vacuum & mediums
- MaVaNus + 1 Sterile nu = LSND yes, MB no!
- Require a path to detector which can be vacated/filled with dirt to test
 - ⇒ Barger, Marfalia, Whisnant. Phys. Rev. D 73, 013005 (2006)
 - ⇒ Schwetz, Winter. Phys. Lett. B633, 557-562 (2006)

Lorentz Violation

- LSND, Atm, Solar oscillations explained by small Lorentz violation
- Size of violation consistent with size of effects emerging from underlying unified theory at Planck scale
 - ⇒ Kostelecky, Mewes. hep-ph/0406255 (2004)
- → Oscillations depend on direction of v propagation
- Don't need to introduce neutrino mass!
- Look for sidereal variations in oscillation probability

CP/CPT Violation

- →CPT violation (or CP + sterile neutrinos) allows different mixing for ν , anti- ν
- Possible explaination for positive LSND, null MiniBooNE
 - Compare v, anti-v measured oscillation probabilities

$$\Rightarrow \mathsf{CP} : \nu_{\mu} \to \nu_{e} \neq \overline{\nu_{\mu}} \to \overline{\nu_{e}}$$

$$\Rightarrow \mathsf{CPT} : \nu_{\mu} \to \nu_{e} \neq \overline{\nu_{e}} \to \overline{\nu_{\mu}} \quad \mathsf{can't do at SNS!}$$

$$\Rightarrow \mathsf{CPT} : \nu_{\mu} \to \mathsf{X} \neq \overline{\nu_{\mu}} \to \mathsf{X}$$

Why the SNS?

Precise, well-defined neutrino/anti-neutrino beam with very high statistics and low backgrounds

Why the SNS?

- 1. Tight beam window
 - ⇒ Small cosmic background
 - \Rightarrow 72% pure v_{μ} sample
- Decay-at-rest neutrino source
 - ⇒ extremely well defined flux and energy
 - \Rightarrow Hg⁺ + π ⁻ = virtually no intrinsic neutrino backgrounds
- 3. High statistics
 - \Rightarrow ~2.2 x 10²³ protons on target / year
 - \Rightarrow ~2.8 x 10²² neutrinos / year

Why the SNS?

- →When FNAL completes running in 2010 we will still need to learn more
- SNS: better defined E spectrum to allow precise measurements
- SNS: simultaneous measurements in neutrino, anti-nu modes
- →SNS: different systematics to LSND, MB
 ⇒Second cross check of LSND
- SNS: can perform beyond the standard model searches not open to MB

Summary

- SNS is about to become the best neutrino based facility in the US
- DOE proposal for 2 near detectors awaiting funding
- ► LANL white paper produced for far detector
- Waiting on MiniBooNE result to go forward with a proposal
- Regardless of the outcome of MiniBooNE, the future of *precision* neutrino measurements in the US lies at the SNS!

Backup Slides

Extra Dimensions

- Extra-D theories confine SM particles to a brane
- Sterile neutrinos can travel off of the brane
- Fluctations in the brane increase the pathlength of active neutrinos relative to sterile neutrinos
- → How can we test this @ SNS? Maybe remove this slide